MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Answer the question.

An employee at the local ice cream parlor asks three customers if they like chocolate ice cream.
 Identify the sample and population.

Name

3) _____

- A) Sample: the 3 selected customers; population: the customers who like chocolate ice cream
- B) Sample: the customers who like chocolate ice cream; population: all customers
- C) Sample: the 3 selected customers; population: all customers
- D) Sample: all customers; population: the 3 selected customers

Provide an appropriate response.

2) The table below shows the average income by age group for the residents of one town in the year 1998. The average incomes for each age group are estimates based on a sample of size 100 from each group.

Age group	Average income
18-24	\$17,180
25-39	\$26,661
40-54	\$32,471
55-70	\$25,960
Over 70	\$18,241

Classify the study as either descriptive or inferential.

A) Descriptive

B) Inferential

Classify the data as either qualitative or quantitative.

3) The following table gives the top five movies at the box office this week.

Rank	Last week	Movie title	Studio	Box office sales (\$ millions)
1	N/A	Pirate Adventure	Movie Giant	35.2
2	2	Secret Agent Files	G.M.G.	19.5
3	1	Epic Super Hero Team	21st Century	14.3
4	5	Reptile Ride	Movie Giant	10.1
5	4	Must Love Cats	Dreamboat	9.9

What kind of data is provided by the information in the second column? A) Qualitative B) Quantitative

Classify the data as either discrete or continuous.

4) An athlete runs 100 meters in 10.7 seconds.		4)
A) Discrete	B) Continuous	

5) Last year, nine employees of an electronics company retired. Their ages at retirement are listed 5) _____ below. Find the mean retirement age.

53 67 68			
50 62 58			
63 52 57			
A) 58.0 yr	B) 58.9 yr	C) 57.6 yr	D) 58.2 yr

Ν	Iountain	Height (ft)	Rank					
N	McKinley	20,320	1					
Ι	Logan	19,850	2					
(Citlaltepec	18,700	3					
S	St. Elias	18,008	4					
ŀ	Popocatepetl	17,930	5					
V	Vhat kind of d A) Discrete	lata is given i	n the third colu	umn of the t I	able? 3) Continuous	5		
Find the m	ode(s) for the	given samp	le data.					
7) 2	0, 40, 46,	40, 49, 40,	49					7)
,	A) 40		B) 40.6	(C) 46		D) 49	,
8) T	he distances t	raveled (in n	uiles) to 7 differ	rent swim n	eets are giver	n below:		8)
1	6, 25, 39, 4	42, 69, 73,	81 Find the	median of t	he given data.			
	A) 49 miles		B) 42 miles	(C) 39 miles		D) 69 miles	
9) T ea to	'he manager o ach one to rec o work. The si	f a small dry ord to the ne x distances a	cleaner employ arest one-tenth re listed below.	ys six peopl n of a mile t r. Find the	e. As part of t ne distance th sample standa	heir perso ey travel c ard deviat	nnel file, she asked one way from home ion.	9)
2	2.7 10.3 42.5	5 27.9 23.4	16.2					
	A) 35.20 mi		B) 11.03 mi	(C) 3408.17 mi		D) 4016.04 mi	
Obtain the 10) T	five-number he test scores	summary fo of 15 studen	r the given dat ts are listed belo	ta. low.				10)
4 6 8	0 47 50 53 3 67 71 72 5 87 90 94	57 76 95						
	A) 40, 53,	71.5, 87, 9	5	1	3) 40, 52.25,	71, 85.5	, 95	
	C) 40, 55,	71, 86, 95		Ι) 40, 52.25,	71.5, 85	.5, 95	

6) _____

Draw a Venn diagram and shade the described events.

11) From a finite sample, events A, B, and C are non-mutually exclusive. Shade the collection A and 11) ______ B and C.

Find the indicated probability by using the special addition rule.

12) A card is d	rawn from a well-shuffled deck of s	52 cards. What is the p	robability of drawing a face	12)
card or a	3?			
A) <u>4</u>	B) 16	C) <u>48</u>	D) <u>2</u>	
13		52	13	

13) _____

Find the indicated probability by using the complementation rule.

13) A percentage distribution is given below for the size of families in one U.S. city.

Size	<u>Percentage</u>		
2	47.1		
3	21.0		
4	19.1		
5	8.0		
6	3.0		
7+	1.8		

A family is selected at random. Find the probability that the size of the family is less than 6. Round results to three decimal places.

A) 0.952	B) 0.048	C) 0.982	D) 0.030
----------	----------	----------	----------

A) 0.11 B) 1.12 C) 0.45 D) 8.09

Find	the conditional pro	bability.							
	15) Suppose one ca	ard is select	ed at rando	m from an o	rdinary de	eck of 52 pl	aying cards	s. Let	15)
	A = event a que	een is select	ted						
	B = event a dia	mond is sel	lected.						
	Determine P(B	A).							
	A) 0.019		B) 0.25		C) 0.07	7	D)	0.308	
Use	the general multipli	cation rule	to find the	indicated p	robability.				
	16) You are dealt t	wo cards su	accessively (without rep	lacement)	from a shu	Iffled deck	of 52 playing	16)
	cards. Find the	probability	y that the fir	st card is a k	ing and th	e second c	ard is a que	een.	
	A) 0.002		B) 0.127		C) 0.00	6	D)	0.154	
Find	the specified proba	bility.							
	17) The number of	loaves of r	ye bread lef	t on the shel	f of a local	bakery at	closing (de	noted by the	17)
	random variab	le X) varies	from day to	o day. Past r	ecords sho	w that the	probability	distribution of	
	X is as shown i	n the follov	ving table. F	ind the prob	pability tha	at there wil	ll be at least	t three loaves	
	left over at the	end of any	given day.	2	3	4	5	6	
	$\frac{x}{P(X = x)}$	0.20	0.25	0.20	0.15	0.10	0.08	0.02	
	A) 0.15		B) 0.20		C) 0.35		D)	0.65	
Calc	ulate the specified r	robability							
cure	18) Suppose that V	V is a rando	om variable.	Given that l	$P(W \le 2)$	= 0.425, f	ind P(W >	2).	18)
	A) 2		B) 0.425		C) 0.57	5	D)	0	
Find	the indicated binor	nial probat	oility.						
	19) What is the pro	bability that	at 6 rolls of a	a fair die wil	l show fou	ır exactly	5 times?		19)
	A \ 0.00011		B) 0.000(4			077	D	0.00400	
	A) 0.00011		B) 0.00064	Ł	C) 0.00	077	D)	0.33490	
Use	a table of areas to fin	nd the spec	rified area u	nder the sta	ndard nor	mal curve	•		
	20) The area that li	es to the rig	ght of 0.59						20)
	A) 0 2 190		B) 0 7224		() 0.27	76		0 2224	
	A) 0.2190		D) 0.7224		C) 0.27	70	D)	0.2224	
Find	the indicated binor	nial probał	oility.						
	21) A multiple cho	ice test has	30 question	s, and each	has four po	ossible ans	wers, of wł	nich one is	21)
	correct. If a stu	dent guesse	es on every o	question, fin	id the prob	ability of §	getting exac	tly 9 correct.	
	A) 54.57745		B) 0		C) 0.12	.981	D) -	47,104.5406	
Use	a table of areas for the 22) Find the 7 areas	he standard	a normal cu	rve to find t	he require	ed z-score.	o ite laft is (96	22)
	22) Find the Z-SCOI		i ule alea ul	ider the star	iuaru norn				<i>∠∠)</i>
	A) 1.82		B) 1.03		C) 1.75		D)	-1.38	

Find the 23	indicated probabilit) The incomes of train standard deviation A) 90.82%	y or percentage for nees at a local mill \$150. What perce B) 9.18%	or the normall are normally entage of train	y distributed distributed v ees earn less C) 35.31%	d variable. vith a mean o than \$900 a r	f \$1,100 and a nonth? D) 40.82%	23)
Find the 24	requested probabilit) The table reports the seminar.	ty. e distribution of p	ocket money,	in bills, of th	e 6 students i	n a statistics	24)
	Student Amount, in dollars	Hannah Ming 2 4	Keshaun Tar 4	neeka Jose 5 5	Vaishali 7		
	For a random samp nearest tenth, that the A) 66.7%	le of size two, find ne sample mean w B) 80.0%	l the probabili vill be within \$	ty, expressed 51 of the popu C) 73.3%	l as a percent ulation mean.	rounded to the D) 78.6%	
25) The test scores of 5 s sampling distributio	students are under on of the sample m	r consideration nean for samp	n. The follow les of size 2.	ring is the dot	plot for the	25)
	• 69 70 71 72	• • • 73 74 75 76 77	• • • 78 79 80 81 ↑ μ	• 82 83 84	• * * * 85 86 87		
	Find the probability population mean. A) 10%	, expressed as a po B) 5%	ercent, that the	e sample mea C) 30%	an will be equ	ual to the D) 20%	
For sam <u>r</u> mean ^x	ples of the specified s	size from the pop	ulation descri	bed, find the	e mean and s	tandard deviation of	the sample
26) The mean and the si 29.4. n = 36. Find	tandard deviation d the mean and sta	of the sample andard deviat	d populatior ion of the sar	n are, respecti nple mean.	vely, 182.1 and	26)
	A) $\mu_{x}^{-} = 29.4;$	$\bar{x} = 4.9$		B) $\mu_{x} = 3$	356.9; $\sigma_{x=}^{\sigma_{-}}$	1.0	
	C) $\mu_{x}^{-} = 182.1;$	x = 4.9		D) $\mu_{x=4}^{\mu}$	4.9; $x = 18$	2.1	
Identify	the distribution of th	ne sample mean. I	n particular, s	state whethe	r the distrib	pution of $\frac{1}{x}$ is norma	l or
27) The weights of peop and a standard devi of size 8. A) Approximately B) Normal, mean	ble in a certain pop ation of 21 lb . De y normal, mean = = 157 lb, standard	pulation are no termine the sa 157 lb, standa d deviation = 2	ormally distr ampling distr rd deviation 21 lb	ibuted with a ibution of the = 7.42 lb	mean of ¹⁵⁷ lb e mean for samples	27)
	C) Approximately D) Normal, mean	y normal, mean = = 157 lb, standard	157 lb, standa 1 deviation = 2	rd deviation 7.42 lb	= 2.63 lb		
Provide a 28	an appropriate respo) Find the value of α A) 0.034	nse. that corresponds t B) 0.34	o a confidence	e level of 96.6 C) 3.4	5%	D) 0.966	28)

Find the confidence interval specified.

29) The mean score, \vec{x} , on an a that $\sigma = 16$, construct a 95	aptitude test for a r 44% confidence in	andom sample of 9 s	students was	64. Assuming	29)
the test	.44 /0 confidence in	iterval for the mean so	ore, woor an s	tudents taking	
A) 32 to 96	B) 56.0 to 72.0	C) 53.3 to 74	.7 D)	60.4 to 67.6	
$^{30)}$ A random sample of 108	light bulbs had a r	mean life of $\overline{x} = 479$ ho	ours. Assume	hat	30)
$\sigma = 23$ hours Construct a	90% confidence int	erval for the mean life,	, μ, of all light	bulbs of this	
type.					
A) 474.7 to 483.3 hours	5	B) 473.8 to 4	84.2 hours		
C) 475.3 to 482.7 hours	5	D) 473.3 to 4	84.7 hours		
Solve the problem.					
31) A sample of 33 washing $\sigma = 2.0$ years c_{11} and	machines yields a	mean replacement tim	e of 10.0 year	rs. Assuming	31)
that ^o = 2.0 years, find the	margin of error in	estimating μ at the 90	l% level of con	fidence.	
A) 0.4 years	B) 2.9 years	C) 0.1 years	D)	0.6 years	
Find the confidence interval specif	ied.				
$\frac{32}{2}$ The mean score, \overline{x} , on an a	aptitude test for a r	andom sample of 8 s	students was	64. Assuming	32)
that $\sigma = 15$, construct a 95	44% confidence in	terval for the mean sco	ore, ^{µ,} of all s	tudents taking	
the test.					
A) 56.0 to 72.0	B) 53.4 to 74.6	C) 60.2 to 67	7.8 D)	34 to 94	
Provide an appropriate response.					
33) A confidence interval for	a population mean	has a margin of error	of 2.8. If the sa	mple mean is	33)
68.9. obtain the confidence	e interval.	has a margin of error	01 2.0. II the 5t	imple mean is	
A) From 67.5 to 70.3		B) From 68.9	to 71.7		
C) From 66.1 to 68.9		D) From 66.1	to 71.7		
Find the confidence interval specifi	ied.				
34) 32 packages are randomly	selected from pac	kages received by a pa	rcel service. T	he sample has a	34)
mean weight of 27.8 pou	nds. Assume that	$\sigma = 2.4$ pounds. What i	is the 95% con	fidence interval	- /
for the true mean weight,	μ, of all packages r	eceived by the parcel s	service?		
A) 27.1 to 28.5 pounds		B) 26.7 to 28.9	pounds		
C) 26.8 to 28.8 pounds		D) 27.0 to 28.6	6 pounds		
			H.	lla	
A hypothesis test is to be performe	d for a population	mean with null hypo	thesis $-0:\mu$	= ¹⁰ . The test	statistic used
$x - \mu_0$					
will be $z = \frac{\sigma/\sqrt{n}}{\sigma}$. Find the requ	ired critical value(s).			
35) A two-tailed test with α	= 0.05.				35)
A) ±1.764	B) ±2.575	C) ±1.96	D)	±1.645	·
Find the confidence interval specifi	ied. Assume that t	he population is norm	nally distribut	ed.	
36) Thirty randomly selected	students took the c	alculus final. If the sar	nple mean wa	s 90 and the	36)
sample standard deviation	n was 13.9, constr	uct a 99% confidence i	interval for the	e mean score of	,
A) 83.01 to 96.99	B) 83.03 to 96.9	7 C) 85.69 to 9	04.31 D)	83.75 to 96.25	

A sample mean, sample size, and population standard deviation are given. Use the one-mean z-test to perform the required hypothesis test about the mean, μ , of the population from which the sample was drawn.

- $(37) \overline{x} = 54, n = 36, \sigma = 5.6, H_0: \mu = 56; H_a: \mu < 56, \alpha = 0.05$
 - A) Reject $\frac{H_0}{\mu}$ if *z* < -1.645; *z* = -2.14; therefore reject $\frac{H_0}{\mu}$ and conclude that μ < 56.
 - B) Reject H_0 if z > -1.645; z = -2.14; therefore do not reject H_0 The data do not provide sufficient evidence to support H_a : $\mu < 56$.
 - ^{C)} Reject ^{H0} if z < -1.645; z = -0.36; therefore do not reject ^{H0}. The data do not provide sufficient evidence to support ^{Ha}: $\mu < 56$.
 - D) Reject H_0 if z < -1.96; z = -2.14; therefore reject H_0 and conclude that $\mu < 56$.

³⁸⁾
$$\times = 7.3$$
, n = 18, $\sigma = 1.9$, ^{H0}: $\mu = 10$; ^{Ha}: $\mu < 10$, $\alpha = 0.01$

- A) Reject H_0 if z > 1.96; z = -6.03; therefore do not reject H_0 . The data do not provide sufficient evidence to support H_a : $\mu < -10$.
- ^{B)} Reject ^{H0} if z > -2.33; z = -6.03; therefore do not reject ^{H0}. The data do not provide sufficient evidence to support ^{Ha}: $\mu < 10$.
- C) Reject H_0 if z < -1.96; z = -6.03; therefore reject H_0 and conclude that $\mu < 10$.
- D) Reject ^{H0} if z < -2.33; z = -6.03; therefore reject ^{H0} and conclude that $\mu < 10$.

For the given hypothesis test, explain the meaning of a Type I error, a Type II error, or a correct decision as specified.

39) In the past, the mean running time for a certain type of flashlight battery has been ^{8.9 hours} The 39) ______ manufacturer has introduced a change in the production method and wants to perform a hypothesis test to determine whether the mean running time has increased as a result. The hypotheses are:

$$H_0: \mu = 8.9$$
 hours

 $^{11}a: \mu > 8.9$ hours

where μ is the mean running time of the new batteries . Explain the meaning of a Type I error.

- A) A Type I error would occur if, in fact, $\mu > 8.9$ hours, but the results of the sampling lead to the conclusion that $\mu < 8.9$ hours.
- B) A Type I error would occur if, in fact, $\mu = 8.9$ hours, but the results of the sampling do not lead to rejection of that fact.
- C) A Type I error would occur if, in fact, $\mu = 8.9$ hours, but the results of the sampling lead to the conclusion that $\mu > 8.9$ hours.
- D) A Type I error would occur if, in fact, $\mu > 8.9$ hours, but the results of the sampling fail to lead to that conclusion.

38)

37) _____

Find the value of the chi-square test statistic for the goodness-of-fit test.

40) According to recent research, the distribution of the number of children per family in the U.S. is as follows.

Number of children	Percent
More than 3	20.3
3	21.3
2	14.5
1	16.1
0	27.8

A random sample of 700 families with both parents under 40 yielded the following data.

Number of children	Number of families
More than 3	154
3	196
2	46
1	101
0	203

You wish to test the claim that the distribution of the number of children per family for families with both parents under 40 is the same as that of the U.S. as a whole. What is the value of the χ^2 test statistic? Note that the expected frequencies are as follows: more than 3 children: 142.1 3 children: 149.1 2 children: 101.5 one child: 112.7 0 children: 194.6

A) $\chi^2 = 13.781$ B) $\chi^2 = 47.674$ C) $\chi^2 = 80.807$ D) $\chi^2 = 32.091$

41) You wish to test the claim that a die is fair. You roll it 48 times with the following results.

 Number
 1
 2
 3
 4
 5
 6

 Frequency
 5
 10
 12
 9
 4
 8

What is the value of the χ^2 test statistic? The observed frequencies and the expected frequencies are shown below.

	Observed	Expected		
	frequency (O)	frequency (E)		
	5	8		
	10	8		
	12	8		
	9	8		
	4	8		
	8	8		
A) $\chi^2 = 7.667$	7 B)	$\chi^2 = 4.182$	C) $\chi^2 = 5.75$	D) $\chi^2 = 3.538$

40) ____

41) _____

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Perform a chi-square independence test using the critical value approach, provided the conditions for using the test are met. Be sure to state the hypotheses and the significance level, to obtain the expected frequencies, to obtain the critical value, to compute the value of the test statistic, and to state your conclusion.

42) A researcher performed a study to determine whether an association exists between sex and blood type. He obtained the following sample data.

42) _____

			Blood	Туре		
		0	A	В	AB	Total
	Female	157	143	40	20	360
Sex	Male	143	127	35	15	320
	Total	300	270	75	35	680

At the 5% significance level, do the data provide sufficient evidence to conclude that an association exists between sex and blood type?

43) A researcher performed a study to determine whether an association exists between political party affiliation and income. She obtained the following sample data.

	_	Income Bracket			
		Low	Middle	High	Total
Party	Democrat	101	130	97	328
	Republican	78	113	146	337
	Other	15	34	9	58
	Total	194	277	252	723

43) _____

At the 10% significance level, do the data provide sufficient evidence to conclude that an association exists between political party affiliation and income?

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine the regression equation for the data. Round the final values to three significant digits, if necessary. 44) x | 2 4 5 6 44) ____

45)
$$\frac{x | 6 | 8 | 20 | 28 | 36}{y | 2 | 4 | 13 | 20 | 30}$$

A) $\hat{y} = -3.79 + 0.897x$
C) $\hat{y} = -3.79 + 0.801x$
B) $\hat{y} = -2.79 + 0.950x$
D) $\hat{y} = -2.79 + 0.897x$

ANSWERS 1) C 2) B 3) B 4) B 5) B

- 6) A 7) A
- 8) B
- 9) B
- 10) C
- 11) D
- 12) A
- 13) A
- 14) A
- 15) B
- 16) C 17) C
- 18) C
- 19) B
- 20) C
- 21) C
- 22) C
- 23) B
- 24) C
- 25) D
- 26) C
- 27) D
- 28) A 29) C
- 30) C
- 31) D
- 32) B
- 33) D
- 34) D
- 35) C
- 36) A
- 37) A
- 38) D
- 39) C 40) B
- 41) C
- 42) H_0 : Sex and blood type are not associated.

^Ha: Sex and blood type are associated.

 $\alpha = 0.05$

Critical value: $\chi^2_{0.05} = 7.815.$ Test statistic: $\chi^2 = 0.297$

Do not reject ^H⁰. At the 5% significance level, the data do not provide sufficient evidence to conclude that an association exists between sex and blood type.

43) ^H0: Political party affiliation and income are not associated.

^Ha: Political party affiliation and income are associated. $\alpha = 0.10$

 $\begin{array}{ll} \chi \stackrel{2}{}_{0.10}^{2}\\ \text{Critical value:} &= 7.779.\\ \text{Test statistic:} & \chi^{2} = 27.831. \end{array}$

Reject H_0 . At the 10% significance level, the data provide sufficient evidence to conclude that an association exists between political party affiliation and income.

44) A

45) A